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We study possible quantum ground states of the Heisenberg antiferromagnet on the star lattice,
which may be realized in the recently discovered polymeric iron acetate,
Fe3��3-O���-OAc�6�H2O�3�Fe3��3-O���-OAc�7.5�2 ·7H2O �Y. Z. Zheng et al., Angew. Chem. Int. Ed. 46,
6076 �2007��. Even though the FeIII moment in this material carries spin-5/2 and the system eventually orders
magnetically at low temperatures, the magnetic ordering temperature is much lower than the estimated Curie-
Weiss temperature, revealing the frustrated nature of the spin interactions. Anticipating that a lower spin analog
of this material may be synthesized in future, we investigate the effect of quantum fluctuations on the star-
lattice antiferromagnet using a large-N Sp�N� mean field theory and a projective symmetry group analysis for
possible bosonic quantum spin liquid phases. It is found that there exist only two distinct gapped Z2 spin liquid
phases with bosonic spinons for nonvanishing nearest-neighbor valence-bond amplitudes. In particular, the spin
liquid phase which has a lower energy in the nearest-neighbor exchange model can be stabilized for relatively
higher spin magnitudes. Hence, it is perhaps a better candidate for the realization of quantum spin liquid state.
We also determine the magnetic ordering patterns resulting from the condensation of the bosonic spinons in the
two different spin liquid phases. We expect these magnetic ordering patterns would directly be relevant for the
low temperature ordered phase of the iron acetate. The phase diagram containing all of these phases and
various dimerized states are obtained for the nearest-neighbor exchange model and its implications are
discussed.
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I. INTRODUCTION

The search for quantum spin liquid phases in two and
three dimensions has lead to recent discoveries of several
spin-1/2 frustrated antiferromagnets, where no magnetic or-
dering has been seen down to the lowest temperature. The
examples include a triangular lattice organic material close to
a metal-insulator transition,2 Kagome or Kagome-like lattice
systems,3–5 and a three-dimensional hyber-Kagome lattice
material.6 The nature of possible spin liquid and other com-
peting phases in these systems has been a subject of intense
research activities. While there has been considerable
progress in understanding some of the candidate quantum
paramagnetic phases such as quantum spin liquid7–13 and va-
lence bond solid phases,14–16 a general understanding of the
interplay between competing phases upon the variation of
the spin interactions is still lacking.17 Therefore, systematic
studies of a variety of frustrated magnets with possibly dif-
ferent spin interactions and/or with different underlying lat-
tice structures would be extremely useful.18,19

In this regard, the recent discovery of the iron acetate may
present one of such useful examples for a two-dimensional
frustrated lattice.1 Here, FeIII spin-5/2 moments reside on the
star lattice as shown in Fig. 1. The Curie-Weiss temperature
is estimated to be �CW=−581 K, but the magnetic ordering
occurs only below TN=4.5 K �the nature of the magnetic
order is presently not known�, leading to a large frustration
parameter, f = ��CW� /TN=129�1. This raises the hope that
spin liquid phases may exist for a lower spin analog of this
material.

In this paper, we investigate possible quantum ground
states of the star-lattice antiferromagnet, including quantum

spin liquid phases, magnetically ordered states, and dimer-
ized phases using a projective symmetry group analysis20

and a large-N Sp�N� mean-field theory.21,22 We expect the
quantum paramagnetic phases, namely the spin liquid and
dimerized phases, may be relevant to a lower spin analog
�e.g., spin-1/2 or spin-1� of the iron acetate, which is yet to
be discovered. The magnetically ordered phases described in
this work may directly be relevant to the low temperature
ordered phase of the iron acetate.

The star lattice can be regarded as a triangular Bravais
lattice with a six-site basis and hence the unit cell contains
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FIG. 1. �Color online� Star lattice is shown with two inequiva-
lent nearest neighbor spin exchange interactions Jt and Jd along the
triangular and bridge links, denoted by the solid and dotted lines,
respectively. The rhombus enclosed by dashed lines corresponds to
a unit cell with six sites labeled by the indices a to f . Here, the
12-sided and 14-sided loops are also shown.
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six lattice sites as shown in Fig. 1. One can also view this
lattice as a variant of the Kagome lattice in the sense that
additional lattice links between triangles of the Kagome lat-
tice are introduced. This leads to two topologically inequiva-
lent nearest-neighbor spin exchange interactions: Jt along the
triangular links and Jd along the bridge links that connect
triangles. In the Heisenberg model with the antiferromag-
netic sign for both Jd and Jt �Jt�0, Jd�0�, there is clearly
a macroscopic degeneracy of the classical ground states.23

Previous exact diagonalization studies of the spin-1/2
nearest-neighbor antiferromagnetic Heisenberg model on the
star lattice suggest that the ground state may be a dimerized
state with dimers sitting on the bridge links for Jt=Jd and a
threefold degenerate valence bond solid state when
Jt�1.3Jd.23,24 The finite size effect in these studies, however,
makes it difficult to draw a definite conclusion. Various mod-
els including the quantum dimer model25 and Kiteav model26

on the star lattice have also been studied recently.
In this work, we provide systematic understanding of pos-

sible quantum spin liquid phases with bosonic spinons in the
star-lattice antiferromagnet using a projective symmetry
group analysis of the mean-field states in the Schwinger bo-
son theory. The projective symmetry group is a powerful tool
to classify all and only the physical spin liquid states without
specifying a particular spin Hamiltonian. We also investigate
how these spin liquid states may be related to the previously-
identified dimerized phases23,24 in the global phase diagram
using a large-N Sp�N� Schwinger boson mean field theory.

Here we focus on the Z2 spin liquid phases on the star
lattice, where Z2 represents a global pure gauge degree of
freedom that leaves the mean-field states invariant. It has
been shown that such Z2 spin liquid states naturally arise in
the Schwinger boson theory of the antiferromagnetic Heisen-
berg model on frustrated lattices.21 The projective symmetry
group analysis leads to only a finite number of such Z2 spin
liquid phases. If we further require the system to have only
nontrivial nearest-neighbor valence bond amplitudes, there
exist only two distinct Z2 �symmetric� spin liquid phases that
preserve all the space group, spin rotation, and time reversal
symmetries in contrast to the four symmetric Z2 spin liquid
states on the Kagome lattice.22 These two states can also be
distinguished by the “flux” enclosed in the 12-sided loop as
shown in Fig. 1, which is defined as the phase of the gauge-
invariant product of the valence-bond-amplitudes Qij along
the 12-sided loop, i.e., �=arg�Q1,2�−Q2,3

� �Q3,4¯ �−Q12,1
� ��.27

The two Z2 spin liquid phases correspond to �=0 and �
=�, respectively. The zero-flux state is an analog of the
�0Hex,�Rhom� phase of the Kagome lattice.22 We study the
spinon and spin-1 excitation spectra in the two spin liquid
phases. In principle, the spin-1 excitation spectra can be
measured by neutron scattering experiment to distinguish
these two phases when an ambiguity as to the nature of the
underlying quantum paramagnetic phase arises.

Using the results above, we also investigate possible mag-
netically ordered phases via the condensation of bosonic
spinons in each spin liquid phase. The magnetic order arising
from the zero-flux state has the magnetic ordering wavevec-
tor q= � � �

3 +n� , �
3 +m�� and �n� ,m�� with integers n ,m.

On the other hand, the magnetic ordering arising from the
�-flux state has the ordering wavevector q= �0,0� and does

not break translational symmetry. These results may directly
be relevant to the low temperature magnetically ordered state
of the iron acetate. The determination of the magnetic order-
ing wavevector would also tell us which spin liquid phase
may close by.28

The relative stability of all these phases and the previ-
ously studied dimerized states23,24 is studied in a large-N
Sp�N� mean field theory of the nearest-neighbor exchange
model21,22 and the global phase diagram is obtained as a
function of the effective spin magnitude �=2Seff and Jt /Jd.
The advantage of the large-N Sp�N� theory is that one can
treat the magnetically ordered and paramagnetic states on
equal footing and the method is nonperturbative in the effec-
tive spin magnitude, �=2Seff. The results are shown in Fig.
6. It is found that the zero-flux state is always energetically
favorable over the �-flux state in the nearest-neighbor
model. In contrast to Kagome lattice, the critical � beyond
which a magnetic order sets in, is much larger for the zero-
flux state, i.e., �c of the zero-flux phase can be as large as
�c�5 while the largest �c�1.5 for the �-flux state. �c�5 is
an unusually large number because �c is often smaller than
unity in many cases.22 In fact, this is even larger than �c
�2 of the �0Hex,�Rhom� phase of the Kagome lattice. This
suggests that the zero-flux phase may exist even for rela-
tively large spin �S�1 /2� system in an anisotropic limit.

In the ultimate quantum limit, ��1, the dimerized state
with the dimers sitting on the Jd bonds becomes the ground
state when Jd�Jt while only the spin correlations on the
triangles survives in the opposite limit, Jd	Jt �for the
nearest-neighbor model�.27 The dimerized state for Jd�Jt is
consistent with the previous numerical result23,24 on the spin-
1/2 nearest-neighbor Heisenberg model. The nature of the
dimerized state for Jd	Jt cannot clearly be identified in the
present work because it requires further analysis of the 1 /N
fluctuation corrections.29,30 We emphasize, however, that the
phase boundaries of various phases may look different in the
physical N=1 limit, so the phase diagram obtained in the
large-N limit should be taken with a grain of salt. Further, it
is possible that the inclusion of other spin interactions may
favor the spin liquid over the dimerized states even deep
inside the quantum regime ��1. The nature of the transi-
tions between various phases in the phase diagram is also
discussed in the main text of the paper.

The rest of the paper is organized as follows. In Sec. II,
we briefly review an Sp�N� mean field theory of the antifer-
romagnetic Heisenberg model. In Sec. III, the concept of
projective symmetry group �PSG� is introduced. Here, the
PSG on the star lattice is applied to the Sp�N� mean field
theory and is used to analyze possible Z2 spin liquid phases.
In Sec. IV, various physical properties of two distinct Z2 spin
liquid phases are explained and the mean-field phase dia-
gram including dimerized and magnetically ordered phases
�for the nearest-neighbor Heisenberg model� is obtained. We
discuss the implications of our results to theory and experi-
ment in Sec. V. Details of the derivation of the PSG for the
star lattice are given in Appendix.

II. SP(N) GENERALIZATION OF THE HEISENBERG
MODEL

To investigate possible magnetically ordered and quantum
paramagnetic states in the quantum antiferromagnetic

TING-PONG CHOY AND YONG BAEK KIM PHYSICAL REVIEW B 80, 064404 �2009�

064404-2



Heisenberg model, H=�ijJijSi ·S j, it is useful to generalize
the usual spin-SU�2� Heisenberg model to an Sp�N�
model.21,33

Let us start with the Schwinger boson representation of
the spin operator Si=bi


† �
�bi�, where 
 ,�= ↑ ,↓, � are
Pauli matrices, bi
 are canonical boson operators and a sum
over repeated 
 indices is assumed. Note that we need to
impose the constraint nb=bi


† bi
=2S to satisfy the spin com-
mutation relations, where S is the spin quantum number. A
generalized model is obtained by introducing N flavors of
such bosons on each site. In order to keep the physical Hil-
bert space of spins, a constraint on the number of bosons
given by nb=bi


†mbi

m =2Seff=�N where m=1, . . . ,N must be

imposed at each site. Note that N=1 corresponds to the
physical limit Sp�1��SU�2�. The action of the correspond-
ing Sp�N� generalized model is then given by

S =	 d
b̄i

m �bi


m −
Jij

2N
ĀijAij + �i�bi


m bi

m − nb�� , �1�

where Aij =�
��mm�bi

m bj�

m� ��
��mm� is the Sp�N� generalized
antisymmetric tensor of SU�2�� and the chemical potential �i
keeps the number of bosons fixed to nb=�N at every site.
The mean-field action is then obtained by decoupling the
quartic boson interaction in S using the Hubbard-
Stratonovich fields Qij =−Qji directed along the lattice links
so that one obtains Qij = �Aij /N at the saddle point. The
mean field solution becomes exact in the large-N limit where
N→� is taken while �=nb /N is fixed. We also introduce the
parametrization bi


m = ��Nxi
bi

m̃ �T, where m̃=2, . . . ,N to allow

for the possibility of long-range order that occurs when xi

�0. Consequently, after integrating over the bosons, we ob-
tain the effective action at the large-N saddle point �or the
mean-field free energy� at zero temperature:

Seff/N = �
i,j

Jij

2
��Qij�2 − Qij��
�xi


� xj�
� � + c . c .� + ��

i

��xi
�2

− �� + 1�� + �
�

���Q,�� , �2�

where ���Q ,�� are the eigenvalues of the mean-field Hamil-
tonian. Note that the chemical potential is now taken to be
uniform since each site has the same number of nearest
neighbor links. In general, magnetic ordering xi
�0 occurs
in the semiclassical limit at larger � while quantum paramag-
netic phases are obtained when � is small. In this work, we
will study possible phases of such a model as a function of �
and Jd /Jt at zero temperature.

III. PROJECTIVE SYMMETRIC GROUP ANALYSIS OF Z2

SPIN LIQUID PHASES ON THE STAR LATTICE

We are interested in the classification of Schwinger boson
mean-field states, especially the spin liquid phases that do
not break any underlying microscopic symmetry. Such sym-
metric spin liquid phases can be classified using a projective
symmetry group analysis, which was previously used for the
fermion34 and boson22 mean-field states for different lattices.
For our purpose, the approach taken by Wang and

Vishwanath22 would be the most relevant. This analysis al-
lows us to identify all the physically realizable spin liquid
phases, independent of particular microscopic Hamiltonians.
In this section, we only consider the physical N=1 case of
the Schwinger boson theory and note that distinct spin liquid
phases may be realized as ground states in different models.

In the Schwinger boson theory, the effective action and all
physical observables are invariant under the following local
U�1� transformation for the boson and mean-field ansatz Qij:

bi
 → ei��i�bi
,

Qij → e−i��i�−i��j�Qij , �3�

where ��i� is an arbitrary real field defined on the underlying
lattice site. Therefore, two mean-field ansatze that are related
by such a transformation correspond to the same physical
state after projection �onto the physical Hilbert space�. An
important point is that symmetry transformations �such as
space group, spin rotation, and time reversal� may return a
mean-field ansatz to a U�1� transformed form and in this
case the transformed ansatz would correspond to the same
physical state. Thus when we consider the mean-field ansatz
that preserves all the microscopic symmetries, we need to
include the U�1� transformations. The main idea of the pro-
jective symmetry group analysis is that a mean-field ansatz
preserves all the symmetries not only when the ansatz is
invariant under the symmetry transformation X, but also
when it is invariant under the symmetry transformation X
followed by a local U�1� gauge transformation, GX, i.e.

�GX · X�Qij = Qij . �4�

Thus, for example, physically distinct symmetric spin liquid
phases can be characterized by different allowed sets of com-
bined transformations, �GX ·X�.

In addition, there also exist pure local gauge transforma-
tions that leave the mean-field ansatz invariant. The set of
such elements is called the invariant gauge group �IGG�. The
IGG is a subgroup of the underlying U�1� symmetry and is
not a physical symmetry since it is not related to any micro-
scopic symmetry. On the other hand, the IGG becomes the
emergent gauge symmetry in the deconfined phase that de-
scribes the relevant spin liquid phases.20 Therefore, it is im-
portant to identify the IGG of a mean-field ansatz. The IGG
and the set �GX ·X� together form the PSG. This PSG then
can be used to classify the physically distinct spin liquid
phases that have the same microscopic symmetries.

It can be readily seen that the IGG of the mean-field an-
satz Qij on the star lattice �or on any frustrated lattice� is Z2.
The two elements of the IGG are the identity operation 1 and
the IGG generator −1 :bi
→−bi
. The spin liquid phases that
are characterized by a Z2 IGG are called Z2 spin liquid states.
Here, we would like to classify possible symmetric Z2 spin
liquid phases on the star lattice using the PSG.

A. Algebraic constraints on the PSG

We would like to find all the constraints on the PSG that
preserve microscopic symmetries such as the space group,
spin rotation, and time reversal. The Schwinger boson mean-

CLASSIFICATION OF QUANTUM PHASES FOR THE… PHYSICAL REVIEW B 80, 064404 �2009�

064404-3



field Hamiltonian is explicitly spin-rotation invariant. Here,
we concentrate on the space group operations such as trans-
lations and point group operations for the star lattice. The
time reversal operation will be considered later. For each
space group operation, the allowed gauge transformations in
the PSG are strongly constrained by certain algebraic rela-
tions among symmetry group elements. Thus, we first need
to derive all the algebraic relations �so-called algebraic
PSGs� and investigate the solutions which provide all the
symmetric spin liquid phases.

In the case of the star lattice, the underlying Bravais lat-
tice is a triangular lattice and the space group contains two
translations T1 and T2 defined by the basis vectors e1 and e2
in Fig. 1, one reflection � along the diagonal, and the 60°
rotation R about a lattice site.

The translation operation, Ti, shifts the lattice by one unit
cell along ei,

T1:�r1,r2,
s� → �r1 + 1,r2,
s� , �5a�

T2:�r1,r2,
s� → �r1,r2 + 1,
s� , �5b�

where r= �r1 ,r2 ,
s� represents the location of a lattice site.
Here �r1 ,r2� with integers r1 and r2 denotes the coordinate of
a unit cell �R=r1e1+r2e2� and 
s� �a ,b ,c ,d ,e , f� labels the
six sites within each unit cell �see Fig. 1�. Reflection �, how-
ever, interchanges the sublattice indices,

�:�r1,r2,a� → �r2,r1,e� , �6a�

�:�r1,r2,b� → �r2,r1, f� , �6b�

�:�r1,r2,c� → �r2,r1,d� , �6c�

�:�r1,r2,d� → �r2,r1,c� , �6d�

�:�r1,r2,e� → �r2,r1,a� , �6e�

�:�r1,r2, f� → �r2,r1,b� . �6f�

Rotation, R, also leaves the 6 sublattice indices interchanged,

R:�r1,r2,a� → �r1 − r2,r1,d� , �7a�

R:�r1,r2,b� → �r1 − r2,r1, f� , �7b�

R:�r1,r2,c� → �r1 − r2,r1,e� , �7c�

R:�r1,r2,d� → �r1 − r2 − 1,r1,b� , �7d�

R:�r1,r2,e� → �r1 − r2 − 1,r1,a� , �7e�

R:�r1,r2, f� → �r1 − r2 − 1,r1,c� . �7f�

One can define the corresponding gauge transformation
GX for each symmetry operation X=T1 ,T2 ,� ,R:

GX:br
 → ei�X�r�br
. �8�

The PSG is then generated by combining the Z2 IGG and the
operations GX ·X. We follow Ref. 22 for the derivation of the

algebraic relations between the PSG elements that would im-
pose strong constraints on possible spin liquid phases and
repeat some of the basic arguments here for completeness.

In order to see how the structure of the space group im-
poses the constraints on the PSG, let us first consider the
symmetry operation T1

−1T2T1T2
−1 which is the identity opera-

tion:

T1
−1T2T1T2

−1:�r1,r2,
s� → �r1,r2,
s� , �9�

on every site. It means that the corresponding PSG opera-
tions should leave the mean-field ansatz unchanged, namely,

�GT1
T1�−1�GT2

T2��GT1
T1��GT2

T2�−1 � IGG. �10�

The PSG operation above can be rewritten as
�T1

−1�GT1
�−1T1� · �T1

−1GT2
T1� · ��T1

−1T2GT1
�T1

−1T2�−1�� · �GT2
�−1.

Since the gauge transformation Y−1GXY with a space group
operation Y acting on a site r would generate a phase
�X�Y�r�� in the boson field, the equation above leads to the
following constraint

− �T2
�r� + �T1

�T2
−1T1�r�� + �T2

�T1�r�� − �T1
�T1�r�� = p1� ,

�11�

where p1=0 ,1 comes from the fact that there are two ele-
ments, 1 and −1 in the IGG.

There are additional constraint equations from other inde-
pendent space group operations. More specifically, together
with Eq. �9�, the following symmetry relations need to be
taken into account:

T2T1 = T1T2, �12a�

T1� = �T2, �12b�

�2 = 1, �12c�

T1RT2 = R , �12d�

T2R = RT1T2, �12e�

�R�R = I , �12f�

R6 = 1. �12g�

It can be shown that all other relations can be derived from
them. In the Appendix, we solve all the algebraic constraints
derived from these relations. The general solution of the al-
gebraic PSG for the star lattice is found as follows:

�T1
�r1,r2,
s� = 0, �13a�

�T2
�r1,r2,
s� = p1�r1, �13b�

���r1,r2,
s� = p1�r1r2 +
p2�

2
, �13c�
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�R�r1,r2,
s� = p1�r1r2 +
p1�

2
r2�r2 − 1� +

p3�

2
+ p4��
s,f

,

�13d�

where p1 , p2 , p3 , p4� �0,1�. Here, �
s,f
=1 when 
s= f and

zero otherwise. Thus there exist 16 possible symmetric spin
liquid phases. Notice that, not surprisingly, the solutions for
the translation and reflection are the same as those in the
triangular lattice. The solution for the rotation, however, has
a more complex structure. The general solution, except for
the rotation, looks similar to the one in the triangular and
Kagome lattice cases where the underlying Bravais lattice is
the same but the number of sites per unit cell is different.
However, we will show later that once we consider mean-
field ansatz with nonvanishing nearest-neighbor bond ampli-
tudes, Qij, only two of these spin liquid phases survive and
the properties of these states are different from the allowed
states in the other cases.

To summarize this section, we solve the algebraic PSG
constraint equations for the star lattice and find that
p1 , p2 , p3 , p4� �0,1� are required to classify all distinct sym-
metric Z2 spin liquid states that preserve all space group
symmetries. In the next section, we show that if the nearest-
neighbor bond amplitudes Qij are nonzero and time reversal
invariance is required, there are additional constraints on
these parameters. At a result, we will see that there exist only
two symmetric Z2 spin liquid states with distinct PSG or
quantum order.

B. Z2 spin liquid states with nonvanishing nearest-neighbor
bond amplitudes

In the star lattice, there are 9 different nearest-neighbor
bond amplitudes Qij in the unit cell and we label them by
�C1 , . . . ,C6� and �D1 ,D2 ,D3� that correspond to the triangu-
lar and bridge links, respectively �see Fig. 2�. If we assume
that all of them are nonzero, there are more constraints on the
PSG structure.

First, we consider what happens to the amplitude
D3�0,0��Q�0,0,c�→�0,0,d� �other amplitudes are defined in a
similar fashion� under reflection �. From Eq. �5c�, we infer

D3�0,0�→
�

−D3�0,0�, then from the definition of the PSG in
Eq. �4�, we get the constraint ���0,0 ,c�+���0,0 ,d�=�
�mod 2��. This leads to p2=1.

Another constraint can be obtained by comparing the 60°
rotation R, and the reflection � on C1�0,0�,

�GR · R�C1�0,0� = �G� · ��C1�0,0� . �14�

Since C1�0,0�→
R

C4�0,0� and C1�0,0�→
�

−C4�0,0�, it im-
poses the condition

��
d + ��

e = � + �R
d + �R

e , �15�

where �X

��X�0,0 ,
� for X� �� ,R�. This implies that p3

=0 in the PSG.
Finally, we consider the constraint by 180° rotation R3,

and the translation �T1�−1 on the bridge link, D1�0,0�,

�GR · R�3D1�0,0� = �GT1
T1�−1D1�0,0� . �16�

Here, D1�0,0�→
R3

−D1�−1,0� and D1�0,0�→
T1

−1

D1�−1,0�, lead-
ing to the constraint,

�R
c �0,0� + �R

d�0,0� + �R
e �0,0� + �R

b�− 1,0� + �R
a�− 1,0�

+ �R
f �− 1,− 1� = � , �17�

which implies p4=1 in the PSG.
Thus, by assuming nonvanishing nearest-neighbor ampli-

tudes, the parameters which characterize the PSG structure
�p1 , p2 , p3 , p4� become �p1 ,1 ,0 ,1�. There are only two dis-
tinct symmetric Z2 spin liquids corresponding to p1=0 ,1. If
the time reversal symmetry is preserved, all the amplitudes
Qij can be taken to be real. Moreover, Qij =−Qji that follows
from the self-consistent equation. Hence the mean field an-
satz Qij can be depicted by an arrow representation in which
the arrow denotes the direction where Qij is taken to be posi-
tive. The arrow representations for the two distinct spin liq-
uid phases are shown in Figs. 3 and 4 respectively. The p1
=1 state can be described by a unit cell with 12 sites while
p1=0 state has a unit cell with 6 sites. Both of them are
characterized by two kinds of nearest-neighbor bond ampli-
tudes Qd and Qt, which refer to the absolute values, �Qij�, of
the amplitudes on the bridge and triangular links, respec-
tively.

These two states can also be distinguished by the “flux”
enclosed in a length-12 polygon,27 which is defined as the
phase � of the gauge-invariant product of the nearest-

a

b
c

de

f

D1

D3

C2

C3
C4

C6C5

C1

D2

FIG. 2. �Color online� In each unit cell, there are 9 different
nearest-neighbor valence-bond amplitude, Qij, which can be classi-
fied into two groups, �C1 ,C2 ,C3 ,C4 ,C5 ,C6� and �D1 ,D2 ,D3�.

a
b

c
de

f

FIG. 3. �Color online� The arrow representation of the mean-
field ansatz for the p1=1 state. The area enclosed by the dashed
lines is the corresponding unit cell with 12 sites. Note that the
directed link Qbe is staggered along the �0,1� direction.
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neighbor amplitudes along the 12-length loop:

Qi1i2
�− Qi2i3

� ¯ �− Qi12i1
� = Qd

6Qt
6ei�, �18�

where �i1 , . . . , i12� label the 12 sites along a length-12 loop as
shown in Fig. 1. The “flux” �=0 for p1=1 state �zero-flux
state� while �=� for p1=0 state ��-flux state�. Hence, the
two states are clearly not gauge-equivalent and can be iden-
tified by the “flux.” The physical properties of these spin
liquid states and how they arise in the large-N Sp�N� mean-
field theory will be discussed in the next section.

IV. LARGE-N SP(N) MEAN-FIELD PHASE DIAGRAM

In this section, we analyze the large-N mean-field theory
of the Sp�N�-generalized Heisenberg model with the nearest-
neighbor exchange interactions. In particular, we investigate
the phase diagram as a function of Jd /Jt and �=2Seff. In the
previous section, we demonstrate that there are only two pos-
sible symmetric spin liquid phases, as shown in Figs. 3 and
4, when the nearest-neighbor bond amplitudes are finite and
they correspond to p1=1 ,0 in the PSG description respec-
tively. The strength of the nearest-neighbor bond amplitudes,
Qd and Qt, and the spinon condensate density xi
 can be
determined by minimizing the effective action, Eq. �2�.

In the Sp�N�-generalized Heisenberg model, it has been
known that the spin liquid state with the smallest “flux” has
the lowest energy. Thus, not surprisingly, we find that the
zero-flux state �p1=1� is always lower in energy in the rel-
evant part of the phase diagram. On the other hand, it is also
known that a ring-exchange or the next-nearest-neighbor
spin interactions can lower the energy of a spin liquid state
with a larger flux.22 Hence, it is useful to analyze the phase
diagram of the Heisenberg model with respect to both of the
two spin liquid states. The mean-field phase diagram for the
nearest-neighbor model is shown in Fig. 5, where the �-flux
state never appears as the true ground state. Anticipating that
other types of interactions can favor the �-flux state, we also
compute the mean-field phase diagram by artificially sup-
pressing the zero-flux state �as if an appropriate additional
interaction may punish the zero-flux state�. The resulting
phase diagram is shown in Fig. 6. Notice that the magneti-
cally ordered phases in the large-� limit in Figs. 5 and 6 are
descendants of the zero-flux and �-flux phases in the sense

that the condensation of the spinons in each spin liquid state
leads to these magnetically ordered phases. On the other
hand, the ground states in the ��1 limit are typically dimer-
ized or valence bond crystal phases. Physical properties of all
the phases present in the phase diagram and the interplay
between them are described as follows.

A. zero-flux spin liquid state and the related magnetically
ordered phase

The zero-flux spin liquid state corresponds to p1=1 in the
PSG description and the mean-field ansatz is shown in Fig.
3. There are 12 sites per unit cell in the mean-field ansatz. It
has zero flux in the 12-sided and �-flux in the 14-sided poly-
gon �see Fig. 1�. Hence, it has the lowest energy in the pure
Heisenberg model according to the flux expulsion argument
by Tchernyshyov et al.27 in the small � limit. It is an analo-
gous state of the �0Hex,�Rhom� spin liquid state identified
in the Kagome lattice.22

The spinon spectrum can be computed using the Sp�N�
theory described in Sec. II. However, the single-spinon spec-

a
b

c
de

f

FIG. 4. �Color online� The arrow representation of the mean-
field ansatz for the p1=0 state. The arrow from the site i to site j
means Qij �0. The area enclosed by the dashed lines is the corre-
sponding unit cell with 6 sites.
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spin-ordered

zero-flux

dimerized-d dimerized-t

FIG. 5. �Color online� Large-N mean-field phase diagram for the
Sp�N� generalized nearest-neighbor Heisenberg model. Notice that
only the zero-flux state occurs as a stable spin liquid state in the
phase diagram.
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FIG. 6. �Color online� Large-N mean-field phase diagram with
the zero-flux state being artificially suppressed �as if an additional
interaction punishes the zero-flux state�. The �-flux state is then the
spin liquid state competing with the dimerized states.
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trum is not gauge-invariant and the gauge-invariant two-
spinon �spinon-antispinon� spectrum is physically more rel-
evant. Here, we present the lower edge of the two-spinon
spectrum, which is given by

E�2��q� = min
p

��q−p + �p� , �19�

where �p is the single-spinon spectrum. The single-spinon
spectrum and the lower edge of the two-spinon spectrum are
shown in Fig. 7, which are similar to that of �0Hex,�Rhom�
spin liquid phase obtained in Kagome lattice.22 The minima
of two spinon spectrum are given by q= � �� /3+n� ,� /3
+m�� and �n� ,m�� with integer n ,m. As � increases, the
minimum of the spinon spectrum decreases and the spectrum
becomes gapless at �=�c, where �c=�c�Jd /Jt� varies de-
pending on the value of Jd /Jt. Possible magnetically ordered
phases arising when ���c=�c�Jd /Jt� are characterized by
the ordering wavevectors q= � �� /3+n� ,� /3+m�� and
�n� ,m�� with integers n ,m.

B. �-flux spin liquid state and the related magnetically
ordered phase

The �-flux spin liquid state is characterized by p1=0 in
the PSG description and the mean-field ansatz �in the arrow
representation� is depicted in Fig. 4. The ansatz is described
by a 6-site unit cell. It has � flux in the 12-sided and zero
flux in the 14-sided polygon as shown in Fig. 1. Both single-
and two-spinon spectrum are shown in Fig. 8. The two-
spinon spectrum has the global minimum at the center of the
Brillouin zone q= �0,0�. It is an analogous state of the Q1
=Q2 state identified in the Kagome lattice.21,22 The conden-
sation of the spinons leads to the q=0 magnetically ordered
ground state which is translationally invariant. Since the two-
spinon spectrum of the �-flux state is quite different from
that of the zero-flux state, the two states can be distinguished

by neutron scattering experiment that measures spin-1 exci-
tations.

C. Dimerized d state

In the regime Jt	Jd, the ground state is a dimerized state
for sufficiently small �, where all the triangular bond ampli-
tudes vanish �Qt=0� and only the amplitude on the bridge
links, Qd, is finite. We call this state as the dimerized-d state.
Notice that this state does not break any translational sym-
metry. This is an isolated-dimer state and there is a gap �Jd
for the spin-1 excitations. The presence of this ground state
in the small � limit can be proven using the small �
expansion27 of the effective action Seff in Eq. �2� for para-
magnetic solutions �xi
=0�. Such a perturbative expansion of
Seff in � leads to

Seff

NNs
= −

P1

R
� −

P2

2RP1
�2 + O��3� , �20�

where Ns is the number of lattice sites, R�−�JdQd
2

+2JtQt
2� /2, and Pn is the “flux operator” defined on the loop

of length 2n,

Pn �
1

Ns
�
loop

� J12

2
Q12��−

J23

2
Q23

� �¯ �−
J2n,1

2
Q2n,1

� � .

�21�

In particular, P1=−�Jd
2Qd

2+2Jt
2Qt

2� /4 and P2= �8Jd
2Qd

2Jt
2Qt

2

+6Jt
4Qt

4+Jd
4Qd

4� /16.
When Jt	Jd, we find that Qt=0 can minimize the effec-

tive action Eq. �2� for �	�c
d and the critical �c

d is

�c
d = 2

1 − 2u

4u − 1
, �22�

where u�Jt / �Jt+Jd��1 /2. This result is asymptotically cor-
rect near u=1 /2 where �c

d=0. When ���c
d, the spin liquid

(b)(a)

FIG. 7. Contour plots of the single-spinon �left� spectrum and
the lower edge of the two-spinon/spinon-antispinon �right� spec-
trum of the zero-flux state �p1=1�. Darker area means lower energy.
The hexagon represents the Brillouin zone.

(b)(a)

FIG. 8. Contour plots of the single-spinon �left� spectrum and
the lower edge of the two-spinon/spinon-antispinon �right� spec-
trum of the �-flux state �p1=0�. Darker area means lower energy.
The hexagon represents the Brillouin zone.
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phases become more stable as far as � is not too large.

D. Dimerized t state

When Jt�Jd, there is another dimerized mean-field state
for sufficiently small �. In this state, all the amplitudes on the
bridge links are zero �Qd=0� while the amplitudes on the
triangular links are finite. The mean-field dimerized-t state,
therefore, does not break any translational symmetry. Again,
the presence of this state can be seen from the small � ex-
pansion of the effective action. That is, Qd=0 is the solution
for the minimum effective action as far as �	�c

t , where �c
t is

�c
t = 4

2u − 1

5 − 8u
. �23�

When ���c
t , the spin liquid phases become more stable for

not-too-large �.

E. Further discussions on the phase diagram

Notice that, at the isotropic point, Jt=Jd, a spin liquid
phase becomes the ground state even in the small � limit,
where the amplitudes on both the bridge and triangular links
are nonvanishing and identical �see Figs. 6 and 5�. However,
it turns out that the amplitudes on the bridge links become
stronger than the ones on the triangular links as � increases.
This indicates a tendency to form local singlets on the bridge
links, which may be consistent with the results of the exact
diagonalization study by Richter et al.23 for the spin-1/2 iso-
tropic model. More precise determination of the ground state
at the isotropic point, therefore, requires the analysis of 1 /N
fluctuations about the large-N mean-field state.

The spin-1/2 anisotropic model with Jd�Jt was previ-
ously studied by exact diagonalization restricted to the dimer
Hilbert space.24 It was found that the dimerized d state is the
stable ground state for Jt	1.3Jd. On the other hand, for the
opposite limit Jt�1.3Jd, it was suggested that the ground
state may be a valence bond crystal made of a lattice of
18-sided plaquette-valence-bond structure, which breaks the
translational symmetry and is threefold degenerate.24 Our
mean-field theory cannot capture possible presence of this
state since such a state would arise via fluctuations beyond
the large-N limit.31,32 Thus, the incorporation of relevant
quantum fluctuations or another method is necessary to pin
down the ultimate fate of the mean-field dimerized t state.

As discussed in the previous sections, the mean-field tran-
sition from the spin liquid phases to magnetically ordered
phases is continuous since it is described by the condensation
of bosonic spinons. When Jd and Jt are not very different
from each other, there is no direct transition from the dimer-
ized state to magnetically ordered phases. On the other hand,
in the extreme anisotropic limits, Jd�Jt or Jd�Jt, there is a
possibility in the �-flux phase diagram that there is a direct
transition from a dimerized state to a magnetically ordered
state—the energies of all the states become very close near
the phase boundary so that our mean-field calculation could
not determine whether there is a direct transition or one still
has to go through a spin liquid phase in the extreme aniso-
tropic cases. If a direct transition is possible, such a transition

does not have to be always first order because the dimerized
d state, for example, does not break any spatial symmetry.
The transition from the spin liquid phases to dimerized states
�with isolated dimers� is continuous and is described by the
confinement-deconfinement transition of spinons in a Z2
gauge theory.35

V. DISCUSSION

In the large-N mean-field phase diagram of the star-lattice
Heisenberg model, it is found that the two possible Z2 spin
liquid phases can exist even for ��1 �this corresponds to
S�1 /2 in the physical N=1 limit� in some parts of the phase
diagram. This is highly unusual given that most of the pre-
vious studies on other lattice models obtain �c	1. While the
phase boundaries in the large-N mean-field theory may
change as N gets smaller, this is certainly an encouraging
sign. Notice, for example, that, when �=3 �Seff=3 /2�, as
Jt / �Jd+Jt� changes from zero to one, one encounters the
dimerized d state, zero-flux spin liquid, magnetically ordered
state, zero-flux state and finally the dimerized t state in the
mean-field phase diagram �see Fig. 6�.

More generally, the zero-flux phase is stable up to a rela-
tively large �=2Seff :�c�2 at the uniform point �Jd=Jt�. It is
close to the �c obtained in �0Hex,�Rhom� spin liquid phase
in Kagome lattice, which has the similar two-spinon
spectrum.22 The �c gets even larger in the anisotropic limit,
Jt�Jd or Jt�Jd.36 The largest �c we obtain is �c�5 in a
very anisotropic limit, Jd /Jt�9. On the other hand, in such
an anisotropic limit, the region in the phase diagram where
the spin liquid state is stable becomes smaller. This suggests
that moderately anisotropic exchange interactions may favor
the realization of spin liquid phases.

It is also worthwhile to notice that the �-flux state has a
relatively small �c, in contrast to a similar study of the
Kagome lattice model.22 As emphasized in Ref. 22, the spin
liquid phases with finite flux may be stabilized by a ring
exchange term that arise near a metal-insulator transition
where charge fluctuations become important.37 Thus the star-
lattice antiferromagnetic insulator at the verge of becoming a
metal may be a good candidate for the realization of the
�-flux spin liquid state.

Finally, as far as we know, the only known realization
of the star-lattice antiferromagnet is the polymeric
iron�III� acetate �Fe3��3-O���-OAc�6�H2O�3�
��Fe3��3-O���-OAc�7.5�2 ·7H2O.1 The spin of the magnetic
FeIII ion is S=5 /2 and the Curie-Weiss temperature deter-
mined from the high-temperature susceptibility is �CW=
−581 K. This material undergoes a magnetic transition at
TN�4.5 K, leading to a large frustration parameter, f
= ��CW� /TN=129. The magnetic ordering patterns predicted
in the large � limit of the large-N mean-field theory may
directly be relevant to the low-temperature phase of this sys-
tem. Once the magnetic ordering pattern is determined by
neutron scattering experiment or other means, one may be
able to determine whether the material is close to the zero-
flux or �-flux spin liquid phases because they are related to
different magnetically ordered phases.28 The large frustration
parameter observed in this material and the large �c from our
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mean-field theory point to the possibility that a spin-1/2 or
even a spin-1 analog of this material may support one of the
spin liquid phases discussed in this work.
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APPENDIX: ALGEBRAIC PSG FOR THE STAR LATTICE

Here we generalize the method developed in the Ref. 22
to derive the allowed PSGs for the star lattice. The strategy is
to find all the constraints on the PSGs and use them to iden-
tify the general solution. We first consider how PSG trans-
forms under an arbitrary U�1� gauge transformation G
�ei�G on the ansatz, Qij→GQij. The transformed ansatz
should now be invariant under GGXXG−1= �GGXXG−1X−1�X.
Thus GX can be replaced by GGXXG−1X−1. This means that
the phase transforms as

�X�r� → �G�r� + �X�r� − �G�X−1�r�� . �A1�

Here, r= �r1 ,r2 ,
s� with integers r1 and r2 which label the
location of the unit cell, R=r1e1+r2e2, and 
s
� �a ,b ,c ,d ,e , f� label the six sites in a unit cell.

To simplify the expressions of the PSG, one can choose
�T1

�r1 ,r2 ,
s�=0 and �T2
�0,r2 ,
s�=0 �independent of the

sublattice index 
s�, by using a gauge degree of freedom or
the gauge transformation G0 via

�G0
�r1,r2� = − �

i=−�

r1

�T1

0 �i,r2� − �
j=−�

r2

�T2

0 �0, j� �A2�

on all sublattices 
s. Here, �T1

0 and �T2

0 correspond to the
phases for an arbitrary initial choice for GT1

and GT2
. Notice

that the gauge transformation G0 is well-defined only on the
lattice with open boundary condition. Extra care is necessary
for periodic boundary condition. We assume open boundary
condition throughout the analysis for simplicity.

Now we would like to find the PSGs which satisfy all the
algebraic constraints in Eq. �11�. First, we consider the con-
straint arising from the symmetry relation, T1T2=T2T1, in Eq.
�11�,

�1�T2
�r� = p1� , �A3�

where we introduce two forward difference operators �1 and
�2, defined as �1f�r1 ,r2�� f�r1+1 ,r2�− f�r1 ,r2� and
�2f�r1 ,r2�� f�r1 ,r2+1�− f�r1 ,r2�. Here p1=0 ,1 is a site-
independent integer corresponding to the two elements in
IGG. The solution for �T2

then is given by

�T2
�r1,r2,
s� = p1�r1, �A4�

which is independent of 
s.
Next, we consider the relation, �T2=T1� and �T1=T2�.

The constraints arising from these relations are

�1���r1,r2,
s� = p2�� + p1�r2, �A5a�

�2���r1,r2,
s� = p3�� + p1�r1, �A5b�

after substituting Eq. �A4� for �T2
�r� and p2� , p3�=0,1. The

solution to these equations is

���r1,r2,
s� = ��

s + p2��r1 + p3��r2 + p1�r1r2, �A6�

where ��

s ����0,0 ,
s�. Here, p2� , p3� and ��


s can further be
determined by additional symmetry relations.

Notice that, from ��= I, we have

���r1,r2,a� + ���r2,r1,e� = p2� , �A7a�

���r1,r2,b� + ���r2,r1, f� = p2� , �A7b�

���r1,r2,c� + ���r2,r1,d� = p2� . �A7c�

Again p2=0 ,1 correspond to the two elements of the IGG,
which is sublattice-independent. Using Eq. �A6�, we get the
following constraint equation.

��
a + ��

e = p2� + �r1 + r2��p2� + p3��� , �A8�

and hence, p2�= p3� �modulo 2� because the left-hand side is
independent of r1, r2. To determine p2�, consider the gauge
transformation G1,

G1:�G1
�r1,r2,
s� = �r1. �A9�

One can show that the gauge transformation G1 does not
modify GT1

and GT2
, but G� changes as follows:

���r� → ���r� = ��

s + �p2� + 1���r1 + r2� + p1�r1r2.

Therefore we can always assume p2�= p3�=0 �modulo 2� and
this leads to

���r1,r2,
s� = ��

s + p1�r1r2. �A10�

To determine ��

s, we consider the following gauge transfor-

mation,

G2:� �2�r1,r2,a� = �0,

�2�r1,r2,e� = − �0,

�2�r1,r2,
s� = 0 
s � �a,e� ,
� �A11�

where �0 is an arbitrary constant. Again, this transformation
does not change GT1

and GT2
, but modifies G��a� �G� acting

on the sublattice site a� and G��e� as follows:

��
a → ��

a + 2�0, �A12�

��
e → ��

e − 2�0, �A13�

��

 → ��


s 
s � �a,e� . �A14�

By choosing �0= 1
4 ���

e −��
a�, we can make the phases ��

a and
��

e to be equal, i.e., ��
a =��

e = p2� /2. Similar gauge transfor-
mations, G2� and G2�, can be used for �b , f� and �c ,d� pairs
such that all the phases, ��


s, are chosen to be p2� /2. The
resulting PSG for the reflection, G�, is then given by

���r1,r2,
s� = p1�r1r2 +
p2�

2
, �A15�

which is independent of the sublattice index, 
s.
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Now let us consider algebraic constraints arising from
T1RT2=R and RT1T2=T2R:

�1�R�r1,r2,
s� = p1�r2 + p4�� , �A16a�

�2�R�r1,r2,
s� = p1��r1 − r2 − 1� + p4� , �A16b�

using the solution of �T1
and �T2

. Here, p4� , p4=0 ,1 can be
fixed by using additional algebraic constraints and the gauge
degrees of freedom. The general solution of the difference
equations for �R�r� is found as

�R�r1,r2,
s� = p1�r1r2 + p4��r1 + p4�r2 +
p1�

2
r2�r2 − 1�

+ �R

s, �A17�

where �R

s ��R�0,0 ,
s�. To determine p4�, we consider the

relation R�R�= I with Eq. �A15� and Eq. �A17�, which re-
sults in, for example,

2�R
a + p4���r2 − 1� = p3� �A18�

for p3=0 ,1 and hence it implies p4�=0 �modulo 2�. Similarly,
we can obtain the following set of coupled equations,

2�R
a = p3� , �A19a�

�R
b + �R

c = p3� , �A19b�

�R
d + �R

e = p3� , �A19c�

2�R
f = p3� . �A19d�

Unlike the case of the Kagome lattice, there is no further
constraint imposed by the relation �R�R= I. To fix the gauge
degree of freedom for �R


s, we consider another gauge trans-
formation,

G4 =�
�4�r1,r2,a� = �1,

�4�r1,r2,e� = �1,

�4�r1,r2,b� = �2,

�4�r1,r2, f� = �2,

�4�r1,r2,
s� = 0 otherwise.
� �A20�

This gauge transformation does not modify GT1
, GT2

, and G�,
but changes �R:

�R
b → �R

b + �2, �A21�

�R
c → �R

c − �2, �A22�

�R
d → �R

d − �1, �A23�

�R
e → �R

e + �1, �A24�

�R

s → �R


s otherwise. �A25�

One can show that, by suitable choices of �1 and �2, all �R

s

can be made to be identical and equal to p3� /2. To simplify
the terms that involve p4, we consider another gauge trans-
formation,

G5 = � �5�r1,r2,a� = ��r1 + r2� ,

�5�r1,r2,e� = ��r1 + r2� ,

�5�r1,r2,
s� = ��r1 + r2 + 1� 
s � �a,e� ,
�
�A26�

which does not modify GT1
, GT2

and G�, but transforms
�R�r� as

�R�r1,r2,
s� → p1�r1r2 + �p4 + 1��r2 +
p1�

2
r2�r2 − 1� +

p3�

2

+ � + ��
s,f
, �A27�

Here, �
s,f
=1 when 
s= f and zero otherwise. In contrast to

the case of Kagome lattice where the term p4�r2 can be
gauged away by the transformation G5, it becomes p4��
s,f

in the star lattice. Moreover, we can neglect the constant �
because it correspond to an IGG operation. Finally, we arrive
at

�R�r1,r2,
s� = p1�r1r2 +
p1�

2
r2�r2 − 1� �A28�

+
p3�

2
+ p4��
s,f

. �A29�
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